加入收藏 | 设为首页 | 会员中心 | 我要投稿 甘孜站长网 (https://www.0836zz.com.cn/)- 运维、物联设备、数据计算、智能推荐、云管理!
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

Uber 宣布开源 AI 工具箱,免代码训练和测试学习模型

发布时间:2019-02-16 18:03:39 所属栏目:经验 来源:段段段落
导读:Uber 宣布开源 Ludwig,一个基于 TensorFlow 的工具箱,该工具箱特点是不用写代码就能够训练和测试深度学习模型。 Uber 官方表示,对于AI开发者来说,Ludwig 可以帮助他们更好地理解深度学习方面的能力,并能够推进模型快速迭代。另一方面,对于 AI 专家来

Uber 宣布开源 Ludwig,一个基于 TensorFlow 的工具箱,该工具箱特点是不用写代码就能够训练和测试深度学习模型。

Uber 官方表示,对于AI开发者来说,Ludwig 可以帮助他们更好地理解深度学习方面的能力,并能够推进模型快速迭代。另一方面,对于 AI 专家来说,Ludwig 可以简化原型设计和数据处理过程,从而让他们能够专注于开发深度学习模型架构。

Ludwig 提供了一套 AI 架构,可以组合起来,为给定的用例创建端到端的模型。开始模型训练,只需要一个表格数据文件(如 CSV)和一个 YAML 配置文件——用于指定数据文件中哪些列是输入特征,哪些列是输出目标变量。如果指定了多个输出变量,Ludwig 将学会同时预测所有输出。使用 Ludwig 训练模型,在模型定义中可以包含附加信息,比如数据集中每个特征的预处理数据和模型训练参数, 也能够保存下来,可以在日后加载,对新数据进行预测。

Uber 宣布开源 AI 工具箱,免代码训练和测试学习模型

对于 Ludwig 支持的数据类型(文本、图像、类别等),其提供了一个将原始数据映射到张量的编码器,以及将张量映射到原始数据的解码器(张量是线性代数中使用的数据结构)。内置的组合器,能够自动将所有输入编码器的张量组合在一起,对它们进行处理,并将其返回给输入解码器。

Uber 表示,通过组合这些特定于数据类型的组件,用户可以将 Ludwig 用于各种任务。比如,组合文本编码器和类别解码器,就可以获得一个文本分类器。

Uber 宣布开源 AI 工具箱,免代码训练和测试学习模型

每种数据类型有多个编码器和解码器。例如,文本可以用卷积神经网络(CNN),循环神经网络(RNN)或其他编码器编码。用户可以直接在模型定义文件中指定要使用的参数和超参数,而无需编写单行代码。

Ludwig 采用的这种灵活的编码器-解码器架构,即使是经验较少的深度学习开发者,也能够轻松地为不同的任务训练模型。比如文本分类、目标分类、图像字幕、序列标签、回归、语言建模、机器翻译、时间序列预测和问答等等。

此外,Ludwig 还提供了各种工具,且能够使用开源分布式培训框架 Horovod。目前,Ludwig 有用于二进制值,浮点数,类别,离散序列,集合,袋(bag),图像,文本和时间序列的编码器和解码器,并且支持选定的预训练模型。未来将支持更多资料的种类。

【编辑推荐】

  1. 2018年终奖调查报告:超60%人年终奖不足万元,逾40%人不及预期
  2. 18年IT老兵:从技术走向管理的“九九八十一难”
  3. 微软安全专家呼吁用户停用IE:旧习难改但终究要改
  4. 在未来和AI争夺工作的16个实用技巧
  5. 5个相见恨晚的Linux命令,每一个都非常实用
【责任编辑:张燕妮 TEL:(010)68476606】
点赞 0

(编辑:甘孜站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读