高性能服务器架构思路「不仅是思路」
上面说了运行时静态的缓存清理,现在说说运行时变化的缓存数据。在服务器程序运行期间,如果用户和服务器之间的交互,导致了缓存的数据产生了变化,就是所谓“运行时变化缓存”。比如我们玩网络游戏,登录之后的角色数据就会从数据库里读出来,进入服务器的缓存(可能是堆内存或者memcached、共享内存),在我们不断进行游戏操作的时候,对应的角色数据就会产生修改的操作,这种缓存数据就是“运行时变化的缓存”。这种运行时变化的数据,有读和写两个方面的清理问题:由于缓存的数据会变化,如果另外一个进程从数据库读你的角色数据,就会发现和当前游戏里的数据不一致;如果服务器进程突然结束了,你在游戏里升级,或者捡道具的数据可能会从内存缓存中消失,导致你白忙活了半天,这就是没有回写(缓存写操作的清理)导致的问题。这种情况在电子商务领域也很常见,最典型的就是火车票网上购买的系统,火车票数据缓存在内存必须有合适的清理机制,否则让两个买了同一张票就麻烦了,但如果不缓存,大量用户同时抢票,服务器也应对不过来。因此在运行时变化的数据缓存,应该有一些特别的缓存清理策略。 在实际运行业务中,运行变化的数据往往是根据使用用户的增多而增多的,因此首先要考虑的问题,就是缓存空间不够的可能性。我们不太可能把全部数据都放到缓存的空间里,也不可能清理缓存的时候就全部数据一起清理,所以我们一般要对数据进行分割,这种分割的策略常见的有两种:一种是按重要级来分割,一种是按使用部分分割。 先举例说说“按重要级分割”,在网络游戏中,同样是角色的数据,有些数据的变化可能会每次修改都立刻回写到数据库(清理写缓存),其他一些数据的变化会延迟一段时间,甚至有些数据直到角色退出游戏才回写,如玩家的等级变化(升级了),武器装备的获得和消耗,这些玩家非常看重的数据,基本上会立刻回写,这些就是所谓最重要的缓存数据。而玩家的经验值变化、当前HP、MP的变化,就会延迟一段时间才写,因为就算丢失了缓存,玩家也不会太过关注。最后有些比如玩家在房间(地区)里的X/Y坐标,对话聊天的记录,可能会退出时回写,甚至不回写。这个例子说的是“写缓存”的清理,下面说说“读缓存”的按重要级分割清理。 假如我们写一个网店系统,里面容纳了很多产品,这些产品有一些会被用户频繁检索到,比较热销,而另外一些商品则没那么热销。热销的商品的余额、销量、评价都会比较频繁的变化,而滞销的商品则变化很少。所以我们在设计的时候,就应该按照不同商品的访问频繁程度,来决定缓存哪些商品的数据。我们在设计缓存的结构时,就应该构建一个可以统计缓存读写次数的指标,如果有些数据的读写频率过低,或者空闲(没有人读、写缓存)时间超长,缓存应该主动清理掉这些数据,以便其他新的数据能进入缓存。这种策略也叫做“冷热交换”策略。实现“冷热交换”的策略时,关键是要定义一个合理的冷热统计算法。一些固定的指标和算法,往往并不能很好的应对不同硬件、不同网络情况下的变化,所以现在人们普遍会用一些动态的算法,如Redis就采用了5种,他们是: 1.根据过期时间,清理最长时间没用过的 2.根据过期时间,清理即将过期的 3.根据过期时间,任意清理一个 4.无论是否过期,随机清理 5.无论是否过期,根据LRU原则清理:所谓LRU,就是Least Recently Used,最近最久未使用过。这个原则的思想是:如果一个数据在最近一段时间没有被访问到,那么在将来他被访问的可能性也很小。LRU是在操作系统中很常见的一种原则,比如内存的页面置换算法(也包括FIFO,LFU等),对于LRU的实现,还是非常有技巧的,但是本文就不详细去说明如何实现,留待大家上网搜索“LRU”关键字学习。 数据缓存的清理策略其实远不止上面所说的这些,要用好缓存这个武器,就要仔细研究需要缓存的数据特征,他们的读写分布,数据之中的差别。然后最大化的利用业务领域的知识,来设计最合理的缓存清理策略。这个世界上不存在万能的优化缓存清理策略,只存在针对业务领域最优化的策略,这需要我们程序员深入理解业务领域,去发现数据背后的规律。 分布 分布策略的概念 任何的服务器的性能都是有极限的,面对海量的互联网访问需求,是不可能单靠一台服务器或者一个CPU来承担的。所以我们一般都会在运行时架构设计之初,就考虑如何能利用多个CPU、多台服务器来分担负载,这就是所谓分布的策略。分布式的服务器概念很简单,但是实现起来却比较复杂。因为我们写的程序,往往都是以一个CPU,一块内存为基础来设计的,所以要让多个程序同时运行,并且协调运作,这需要更多的底层工作。 (编辑:甘孜站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |