加入收藏 | 设为首页 | 会员中心 | 我要投稿 甘孜站长网 (https://www.0836zz.com.cn/)- 运维、物联设备、数据计算、智能推荐、云管理!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

AI攻破高数核心,1秒内求解微分方程

发布时间:2021-03-07 13:52:51 所属栏目:外闻 来源:互联网
导读:和它的积分 首先,就是要做出一个函数它的微分这样的数据对。团队用了三种方法: 第一种是正向生成 (Fwd) ,指生成随机函数 (最多n个运算符) ,再用现成的工具求积分。把工具求不出的函数扔掉。 第二种是反向生成 (Bwd) ,指生成随机函数,再对函数求导。填

和它的积分

首先,就是要做出“一个函数&它的微分”这样的数据对。团队用了三种方法:

第一种是正向生成 (Fwd) ,指生成随机函数 (最多n个运算符) ,再用现成的工具求积分。把工具求不出的函数扔掉。

第二种是反向生成 (Bwd) ,指生成随机函数,再对函数求导。填补了第一种方法收集不到的一些函数,因为就算工具求不出积分,也一定可以求导。

第三种是用了分部积分的反向生成 (Ibp) 。前面的反向生成有个问题,就是不太可能覆盖到f(x)=x3sin(x)的积分:

F(x)=-x3cos(x)+3x2sin(x)+6xcos(x)-6sin(x)

因为这个函数太长了,随机生成很难做到。

另外,反向生成的产物,大多会是函数的积分比函数要短,正向生成则相反。

为了解决这个问题,团队用了分部积分:生成两个随机函数F和G,分别算出导数f和g。

如果fG已经出现在前两种方法得到的训练集里,它的积分就是已知,可以用来求出Fg:

∫Fg=FG-∫fG

反过来也可以,如果Fg已经在训练集里,就用它的积分求出fG。

每求出一个新函数的积分,就把它加入训练集。

如果fG和Fg都不在训练集里,就重新生成一对F和G。

如此一来,不借助外部的积分工具,也能轻松得到x10sin(x)这样的函数了。

一阶常微分方程,和它的解

从一个二元函数F(x,y)说起。

有个方程F(x,y)=c,可对y求解得到y=f(x,c)。就是说有一个二元函数f,对任意x和c都满足

(编辑:甘孜站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读